
WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE
DIFFERENTIALGLEICHUNGEN

Homework #9 Key

Problem 1. Consider the homogeneous isotropic elastic wave equations with constant
coefficients, that is

ρ
∂2u

∂t2
−∇ · [µ(∇u+∇uT )]−∇[λ∇ · u] = 0 .

Here ρ is the density, µ and λ are the Lamé parameters, and u : [0,∞) × R3 → R3

denotes the displacement. All three coefficients are assumed to be positive constant.

a.) Find solutions of the form u(t, x) = aei(ωt−k·x) where ω is a positive constant and
a, k ∈ R3. These solutions are called plane waves.

Solution. Suppose that a, k 6= 0. Compute

∂2u

∂t2
= −ω2u, ∇u+∇uT = −i[akT + kaT ]ei(ωt−k·x), ∇ · u = −ia · kei(ωt−k·x) ,

and hence

ρ
∂2u

∂t2
−∇ · [µ(∇u+∇uT )]−∇[λ∇ · u]

= −ρω2aei(ωt−k·x) + µ[akT + kaT ]kei(ωt−k·x) + λ[aTk]kei(ωt−k·x)

= ei(ωt−k·x)[ω2a− µa|k|2 − (µ+ λ)k(aTk)] .

If a = k then

ρ
∂2u

∂t2
−∇ · [µ(∇u+∇uT )]−∇[λ∇ · u] = aei(ωt−k·x)[−ρω2 + (2µ+ λ)|k|2] = 0

if and only if ω =

√
2µ+ λ

ρ
|k|. If a ⊥ k, that is a · k = aTk = 0, then

ρ
∂2u

∂t2
−∇ · [µ(∇u+∇uT )]−∇[λ∇ · u] = aei(ωt−k·x)[−ρω2 + µ|k|2] = 0

if and only if ω =

√
µ

ρ
|k|.

Comment. More generally, a plane wave is a solution to the differential equation of the
form u(t, x) = f(t, k · x) for some k ∈ R3.

b.) Characterize your plane wave solutions as longitudinal (k ‖ a) or transversal (k ⊥ a).

Solution. For a ‖ k with |k| = 1 the plane wave solution

u = aei(t
√

(2µ+λ)/ρ−k·x)

was obtained. This wave is longitudinal since its amplitude a points in the same direction
as the wave vector k. This is to say, that the direction of propagation given by k coincides
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with the direction of the oscillation. In the context of elasticity, these waves a known as
p-waves or pressure waves.

On the other hand, if k ⊥ a with |k| = 1 one obtains the plane wave solution

u = aei(t
√
µ/ρ−k·x)

This time the oscillations move perpendicular to the direction of propagation. Hence,
these waves are called transversal waves or in the setting of elasticity, shear waves. Since
there are two linearly independent vectors a perpendicular to k, there are two linearly
independent shear waves. The constant ω stands for the frequency of the waves. In our
setting the pressure wave has a higher frequency than the shear wave.

Problem 2. Suppose that P is symmetric hyperbolic with coefficients in W 1
∞(Q) and

that A0 = IN . Show that u ∈ L2(Q) and Pu ∈ L2(Q) implies that u(t, ·) ∈ H−1/2(Rd) for
all t ∈ [0, T ]. Recall that Q = (0, T )× Rd.

Solution. Suppose that w, v ∈ H1(Q). Using integration by parts with respect to the
time variable gives∫ t

0

∫
Rd

Pw · v dsdx =

∫ t

0

∫
Rd

w · P ∗v dsdx+

∫
Ω

w · v dx
∣∣∣s=t
s=0

,

for 0 < t ≤ T , where P ∗ is the adjoint operator introduced in Section 3.2. Choosing
v ∈ H1(Q) such that v(0, x) = 0 for all x ∈ Rd gives(

w(t, ·), v(t·)
)
L2(Rd)

=

∫ t

0

(Pw, v)L2(Rd)dt−
∫ t

0

(w,P ∗v)L2(Rd)dt .

Choose now g ∈ H1/2(Rd). By Proposition 2.2.5 there exists a v ∈ H1(Q) and a positive
constant C independent of g such that v(0, ·) = g and ‖v‖H1(Q) ≤ C‖g‖H1/2(Rd). In
addition one can multiply this function v by a suitable smooth cutoff function ϕ(t) such
that ϕ(0)v(0, ·) = 0. For convenience we will denoted the resulting function by v. It
satisfies still the bound ‖v‖H1(Q) ≤ C‖g‖H1/2(Rd), with for a larger constant C. Then,

using the displayed formula above and the continuity of P ∗ as an operator from H1(Q)
into L2(Q), one gets,

‖w(t, ·)‖H−1/2(Rd) = sup
‖g‖

H1/2(Rd)

|
(
w(t, ·), g

)
L2(Rd)

|

≤ ‖Pw‖L2(Q)‖v‖L2(Q) + ‖P ∗v‖L2(Q)‖L2(q)‖w‖L2(Q)

≤ ‖Pw‖L2(Q)‖v‖L2(Q) + C‖v‖H1(Q)‖L2(q)‖w‖L2(Q)

≤ C‖v‖H1(Q)

[
‖w‖L2(Q) + ‖Pw‖L2(Q)

]
≤ C‖g‖H1/2(Rd)

[
‖w‖L2(Q) + ‖Pw‖L2(Q)

]
for all w ∈ H1(Q). To complete the proof we use the following density statement which
we will prove below: For u ∈ L2(Q) with Pu ∈ L2(Q) there exists a sequence of wn ∈
C∞0 (Rd+1), n = 1, 2, ... such that

(1) ‖wn − u‖L2(Q) → 0 and ‖Pwn − Pu‖L2(Q) → 0 .

Using the inequality above shows that ‖wn(t, ·)‖ converges in H−1/2(Rd) and the limit is
defined to be the trace u(t, ·). This proves the statement for 0 < t ≤ T . For t = 0 one
chooses t = T and v ∈ H1(Q) with v(T, ·) = 0.
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Finally we will show that the restriction of functions in C∞0 (Rd+1) is dense in the linear
space

H = {u ∈ L2(Q) : Pu ∈ L2(Q)} .
Suppose that u ∈H is orthogonal to all functions in v ∈ C∞0 (Rd+1), that is

0 = (u, v)L2(Q) + (Pu, Pv)L2(Q) for all v ∈ C∞0 (Rd+1) .

Then u0 = −Pu satisfies P ∗u0 = −u in the sense of distributions. Since u0 ∈ L2(Q) we
know that u0 ∈ H as well since P is symmetric hyperbolic. Indeed, one can show that
for w ∈ L2(Q) we have Pw ∈ L2(Q) if and only if P ∗w ∈ L2(Q). Hence we know that

(P ∗u0, v)L2(Q) = (u0, Pv)L2(Q) for all v ∈ C∞0 (Rd+1) .

Hence u0 ∈ H0 which is the closure of the space C∞0 (Q) with respect to the topology in
H . There must exist a sequence ψk ∈ C∞0 (Q) (k = 1, 2, ...) such that

(u, v)L2(Q) + (Pu, Pv)L2(Q) = lim
k→∞

{
(−P ∗ψk, v)L2(Q) + (ψk, Pv)L2(Q)

}
= 0 ,

for all v ∈ H . Thus u ≡ 0 and consequently restriction of C∞0 (Rd+1) functions to Q is
dense in H .

Problem 3. Prove the following simplified version of Lemma 3.2.1: A function u ∈
L∞(Q) satisfies u ∈ W 1

∞(Rd) if and only if u is Lipschitz, i.e., there exists a constant
L > 0 such that |u(x)− u(y)| ≤ L|x− y| for all x, y ∈ Rd. (Hint: Use the regularization
of functions as described in the lecture note before Lemma 3.3.4.)

Proof. Suppose that u ∈ W 1
∞(Rd). Let φ ∈ C∞0 (Rd) such that φ ≡ 1 for |x| ≤ R and

consider the function φu ∈ W 1
∞(Rd) with compact support. For brevity, this function is

denoted by u and u(ε) is its regularization. Then u(ε) → u in L1(Rd) as ε → 0 which
implies the existence of a sequence εl → 0 as l → ∞ with u(εl) → u almost everywhere
(with respect to the Lebesgue measure in Rd).

Furtheremore, for x, y ∈ Rd we have

u(ε)(x)− u(ε)(y) =

∫ 1

0

∇u(ε)(tx+ (1− t)y)dt · (x− y) ,

which implies
|u(ε)(x)− u(ε)(y)| ≤ supz∈Rd |∇u(ε)(z)||x− y| .

Note that
∂u(ε)

∂xj
(x) =

∫
Rd

ϕε(x− y)
∂u

∂yj
(y) dy

gives

sup
x∈Rd

∣∣∣∣∂u(ε)

∂xj
(x)

∣∣∣∣ ≤ sup
x∈Rd

∣∣∣∣ ∂u∂xj (x)

∣∣∣∣
and hence,

|u(ε)(x)− u(ε)(y)| ≤ L|x− y| where L = sup
x∈Rd

|∇u(x)| ,

which is to say that the regularization on u is uniformly Lipschitz continuous. Since u(εl)

converges almost everywhere to u we know that

(2) |u(x)− u(y)| ≤ L|x− y| for all x, y ∈ Rd \ N ,
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where N is a set of Lebesgue measure zero. Recall that functions in L∞ are equivalence
classes of functions which may differ from each other only on a set of Lebesgue measure
zero. For x ∈ N one considers the representative which satisfies

u(x) = lim
xn→x

u(xn) xn ∈ Rd \ N .

In view of (2), the value u(x) is independent of the chosen sequence and the chosen
representative satisfies the Lipschitz condition for all x, y ∈ Rd. Finally, since R was an
arbitrary positive number, one obtains that each equivalence class u ∈ W 1

∞(Rd) has a
Lipschitz continuous representative.

To prove the converse, assume that u ∈ L∞ and that there exists a constant L > 0
such that |u(x)− u(y)| ≤ L|x− y| for all x, y ∈ Rd. For fixed j, the difference quotients
Dj,hu(x) = (u(x+ hej)− u(x))/h where ej is the jth standard basis vector and h 6= 0 are
uniformly bounded. There must exist a sequence hl, l = 1, 2, 3, ... and v ∈ L∞(Rd) such
that Dj,hlu→ v weakly star in L∞(Rd). This is to say that for all w ∈ L1(Rd) we have

lim
l→∞

∫
Rd

wDj,hlu dx =

∫
Rd

wv dx

Finally, we will show that v is the distributional derivative of u in the jth coordinate
direction. Let w ∈ C∞0 (Rd) ⊂ L1(Rd). Then∫

Rd

u
∂w

∂xj
dx = lim

l→∞

∫
Rd

uDj,−hlw dx = − lim
l→∞

∫
Rd

Dj,hluw dx = −
∫
Rd

vw dx ,

which proves that v is the first derivative of u with respect to xj.
�


